Synthesis and Comparison of Various Metal Oxide Electrode Materials for Supercapacitors

Yasar Ozkan Yesilbag ^{a,d*}, Fatma Nur Tuzluca ^{a,d*}, Mehmet Ertugrul ^{b,c,d}

^aDepartment of Physics, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey ^bDepartment of Electrical and Electronics Engineering, Ataturk University, Erzurum 25240, Turkey ^cDepartment of Nanoscience and Nanoengineering, Ataturk University, Erzurum 25240, Turkey ^dNanoscience and Nanoengineering Application and Research Center, Ataturk University, Erzurum 25240, Turkey

*Corresponding Author Email: oyesilbag@erzincan.edu.tr

Abstract: Metal oxides (In₂O₃, Co₃O₄, CoMn₂O₄, MnO₂ and CuO@CuS) with different morphologies have been investigated as supercapacitor electrode materials. The crystal structures and morphologies of the electrodes were determined by using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersion X-Ray Spectroscopy (EDS). Cyclic Voltammetry (CV) and Galvanostatic Charge Discharge (GCD) analysis of the electrodes were performed in different aqueous electrolyte solution.

Keywords: Metal Oxides, Hydrothermal and Thermal Oxidation Method, CVD, Supercapacitor

INTRODUCTION

In recent years, supercapacitors are of particular interest due to their high power density, fast charge/discharge rate and long cycle life [1–3]. Supercapacitors are divided into two types depending on the charge storage mechanisms - electrical double layer capacitors (EDLCs) and pseudocapacitors [3]. EDLCs store charge electrostatically at electrode/electrolyte interface as charge separation. There is no charge transfer between electrode and electrolyte. Pseudocapacitors store by charge transfer between electrode and electrolyte. The charge is transferred at the surface or in the bulk near the surface through adsorption, redox reaction and intercalation of ions [4]. Transition metal oxides and hydroxides are being extensively investigated for use in high performance supercapacitors due to their low cost and low toxicity [5].

MATERIALS AND METHODS

Different types of metal oxide have been synthesis various methods. For example, one-dimensional (1-D) single crystal indium oxide (In_2O_3) nanotowers, nanobouqets, nanocones, and nanowires were investigated as a candidate for a supercapacitor electrode material using a chemical vapor deposition (CVD) system. Co_3O_4 and $CoMn_2O_4$ nanostructures and MnO_2 nanosheets have been successfully synthesized on nickel foam by hydrothermal method. Large-scale vertically aligned single-crystalline CuO NWs have been synthesized on copper foam at 500 °C for 4 h via thermal oxidation method and then CuS were synthesized on CuO NWs via hydrothermal method. **RESULTS AND DISCUSSIONS**

Fig, 1. Areal capacitance vs. current density of In₂O₃ nanostructures.

Fig. 2. Specific capacitance vs. current density of Co₃O₄ nanosheets/nanowires.

Fig. 3. Specific capacitance vs. current density of CoMn₂O₄ nanosheets/nanowires.

Fig. 4. Specific capacitance vs. current density of MnO₂ nanosheets.

Fig. 5. Areal capacitance vs. current density of CuO@CuS nanowires.

Table 1. Comparison of spec materials.	ific capacitance values of m	etal oxide sup	ercapacitor electrode
Electrode Materials	Specific Capacitance	Electrolyte	Methods

Electrode Materials	Specific Capacitance	Electrolyte	Methods
In ₂ O ₃ nanowires	16.6 mF cm ⁻² at 0.04 mA cm ⁻²	1 M Na ₂ SO ₄	CVD
In ₂ O ₃ nanotowers	10.1 mF cm ⁻² at 0.04 mA cm ⁻²	1 M Na ₂ SO ₄	CVD
In ₂ O ₃ nanobouquets	12.5 mF cm ⁻² at 0.04 mA cm ⁻²	1 M Na ₂ SO ₄	CVD
In ₂ O ₃ nanocones	4.9 mF cm ⁻² at 0.04 mA cm ⁻²	1 M Na ₂ SO ₄	CVD
Co ₃ O ₄ nanosheets/nanowires	2083 F g ⁻¹ at 0.5 A g ⁻¹	1 M KOH	Hydrothermal Method
CoMn2O4 nanosheets/nanowires	755 F g ⁻¹ at 0.5 A g ⁻¹	1 М КОН	Hydrothermal Method
MnO ₂ nanosheets	294 F g ⁻¹ at 1 A g ⁻¹	1 M KOH	Hydrothermal Method
CuO@CuS core/shell nanowires	343 mF cm ⁻² at 2 mA cm ⁻²	2 М КОН	Hydrothermal and Thermal Oxidation Method

REFERENCES

- [1] G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 2012, 41, 797–828.
- [2] Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, J. Mater. Chem. A. 2015, **3**, 43–59.
- [3] F. Beguin, V. Presser, A. Balducci, E. Frackowiak, *Adv. Mater.* 2014, **26**, 2219–2251.
- [4] V. Augustyn, P. Simon, B. Dunn, *Energy Environ. Sci.* **2014**, *7*, 1597.
- [5] F. Shi, L. Li, X. Wang, C. Gu, J. Tu, *RSC Adv.* 2014, **4**, 41910–41921.